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1. INTRODUCTION

The first author has investigated the eigenvalue problem of discrete linear mechan-
ical systems with a single viscous damper subject to constraint equations and has
presented the results in two papers. The first study [1] was concerned with the
above system in which only a linear constraint relation between the system
co-ordinates was allowed. It was shown that the characteristic equation of this
constrained system can be reduced to a simple analytical expression. The study in
reference [2] was in some sense a generalization of the results of reference [1]
because not only one but several constraint equations were allowed. The present
study is more general than the previous two because the damping is assumed to be
the result of several viscous dampers acting on the system.

2. THEORY

The motion of a linear discrete mechanical system with n d.o.f. is governed in the
physical space by the matrix differential equation of order two:

Mq(r) + Dq(1) + Kq(1) = 0, 1)

where M, D, and K are (n x n) mass, damping and stiffness matrices, respectively.
q is the (n x 1) vector of the generalized co-ordinates.

It will be assumed that the damping action on the system is due to r < n viscous
dampers of damping constants ¢; (i = 1,..., r). The mathematical expression for
this statement is

rank D =r. )

Let us assume further that the co-ordinates g; of the system are subject to linear
constraint equations of the form

ﬁ;qzos pzlaala (3)

where a} =[Gy, ..., dyp) and " = [q1, ..., qu]-
The main concern of the present study is to establish the characteristic equation
of the constrained system described above.
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The transformation

q=on, ()
where ® = [®@, ..., ®,] is the modal matrix of the undamped system, results in the
following equation of motion in the modal space:
i} + D*ij + Q°n =0, (5)
where 0" = 11, ..., 1.].
The relations
O'M®D =1, QKD = Q? = diag(w?), i=1,...,n (6)

are used, which are due to the mass orthonormalization of the mode vectors ®@;. I is
the (n x n) unit matrix.

It is worth noting that the transformed matrix D* = ®"D® can be written due to
its symmetric nature as a sum of dyadics [3], namely

D* = ) 4,d;d]. (7)
i=1
0; and d; are the eigenvalues and the normalized eigenvectors of the matrix D¥,
respectively, i.e., dfd; = 1. The coupling of the eigenmodes of the physical system is
affected by viscous dampers of damping constants ¢; which act on the vibrating
system via the orientation vectors d;. As will be seen later, it is not possible to
arrange the characteristic equation analytically as in references [1, 2] if multiple
dampers exist as is the case in the present study. For this reason, writing the
damping matrix in the modal space in the form of a sum of dyadics is more of
a formal nature here, and its aim is to call attention to the relationship with the
formulation in references [1, 2].

The matrix Q2 in equations (6) is defined as the diagonal matrix of the squares of
the eigenfrequencies of the undamped mechanical system.

The transformed constraint equations take the form

an=0, p=1,..1 (8)

with a, = [a,,, ..., a,,] where a;, = a,®;. By means of the Lagrange’s equations
formalism in connection with Lagrange’s multipliers, equations (5) and (8) can be
combined as

r l
N+ < 51d1le>n + an = Z Hp@p, )
i=1 r=1

1

where p, denotes the corresponding Lagrange multiplier.
If exponential solutions of the form

n=oac", w,=p,e" p=1..1 (10)

are substituted into equation (9), where A represents the unknown eigenvalue of the
constrained system and a and f8, are unknown amplitudes,

1 r -1
a= Y B, [/121 + ) addf + 92} a, (11)
=1

p i=1
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is obtained. Then, after substitution into the constraint equation (8), the following
equations are obtained for the determination of coefficients f3,:

r -1
{a;|:/121 + 4 0;ddf + 92:| a1}/5‘1 + -

i=1

r -1

+ {al];|:/121 + A Z 5ldld,T + QZ:| al} ﬁl = 0, p = 1, cees . (12)
i=1

Equating to zero the determinant A of the coefficient matrix of this set of

homogeneous equations for f8, results in the characteristic equation of the system

A7) =0, (13)

where the p, gqth element of the [ x [ determinant 4 is defined as

r -1
qu = aIT,|:/121 + A Z 5,dld;r + 92:| a,. (14)
i=1
In case of r = 1, i.e., only one viscous damper, it was possible to rearrange the
right-hand side of the above equation in the form of an analytical expression, using

a matrix inversion formula from matrix theory [2].

Although, in principle it is possible to use the same formula recursively for r > 1,
we need to point out that they become very tedious even for r = 2. For this reason,
it is not possible to convert 4,, into an analytical expression.

3. NUMERICAL EVALUATIONS

This section is devoted to the testing of the reliability of the expressions obtained.
The simple system in Figure 1 is taken as an illustrative example. It consists of
a vibrational system with 4 d.o.f. in which every mass is acted upon by an inertial
viscous damper.

The physical parameters are chosen as k = 2, m = 3, ¢ = 2. The eigenfrequencies
of the undamped oscillator in Figure 1 can be shown to be w; = 036657965,
w, = 1-12634841, w; = 1-33113336, w4 = 1-:80817229. The corresponding modal
matrix is as follows:

D= [(D1 (Dz (Ds (D4]

0-16702739 023699340 —0-38616296 0-31646087
0-23370715 0-12999193 —0-06605818 —0-30130723
0-24349274 —0-04719554 0-18178137 0-12864878
013539191 —0-48650735 —0-27631637 —0:04429703

Now, let it be assumed that two constraints of the form ¢, = ¢4, g4 = g3 are
imposed on the system, leading to Figure 2, such that according to equation (3)

a,=[-1100]", a,=[00 —1 17"
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Figure 1. The unconstrained four-degree-of-freedom system used as the sample.
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Figure 2. The system obtained from the system in Figure 1 by imposing the constraints q; = ¢, and

q3 = q4.-

are obtained which in turn determine a; and a, in equation (8) as

a, =

—0-61776810
0-06667976
—0-10700146
0-32010477

a, =

—0-17294581
—0-10810083
—0-43931180
—0-45809774

0; and d; in equation (7) which represent the eigenvalues and eigenvectors of the
damping matrix in the model space are as follows:

51 = 0-33333333,
5, = 0-44444444,
55 = 066666667,
S, = 133333333,

d,

d;

[ —0-54812631 |

073804897 ]|
—0-57246327
—0-31841390

0-16180885 |

—0-28929993
—0-41048460

0-66885386 |

d,

d4:

[ —0-38594635 ]

| —0-54534411 |

—0-73047823
0-14158663

007672470 ]|
—0-23450567
0-84265545

047859399 |
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TABLE 1

Eigenvalues of the system in Figure 2 with k=2, m=3,¢c =2

A2 —0-28984355 + 0-327756551 —0-28984349 + 0-:327756651
A3.4 —0-26571201 + 1-:292534171 —0-26571201 + 1-292534171
TABLE 2

Eigenvectors of the system in Figure 2. First column: direct solution, second column:
by the present method

R 092503384 + 0-04276219i 0-92503384 4+ 0-042762191
V1,2
1 1
N |: —1-41577458 + 0'26220862i] |: —1-41577458 + 0'26220862i:|
V3.4
’ 1 1

The eigenvalues of the special system described are given in Table 1. The complex
numbers in the first column are the eigenvalues obtained by solving directly the
eigenvalue problem of the reduced system in Figure 2. The numbers in the second
column are obtained by solving equation (13) numerically with MATLAB. The
agreement of the complex numbers in both columns is excellent.

In order to gain insight into how accurately the eigenvectors can be obtained, the
eigenvectors of the system in Figure 2 are given in Table 2 according to the
representation Xj = [§] | 4;y/ 1.

The eigenvectors in the first column are obtained directly by solving the
eigenvalue problem of the system in Figure 2. The eigenvectors in the second
column are determined using equations (11), (4), and (10). The agreement here is
also excellent.

4. CONCLUSIONS

This study is concerned with a linear discrete mechanical system which is
damped by several viscous dampers. The co-ordinates of the system are assumed to
be subject to several linear constraint equations. The main concern is the establish-
ment of the characteristic equation of the so constrained system.
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